B.Sc. (Honours) with Physics

Program Specific Outcomes (PSO):

- The students would gain substantial knowledge in various branches of physics: Electronics, Quantum, classical, statistical mechanics, condensed matter physics, astrophysics, particle, nuclear and high energy Physics.
- Also students learn about various application based topic such as Workshop skill, Weather forecasting, Radiation Hazards etc.
- Students can understand basic mechanics and properties of matter.
- Students can illustrate the principles of electricity, magnetism, thermodynamics, optics and spectroscopy.
- Students can identify, formulate and analyze complex problems using basic principles of mathematics, physics and statistics.
- Students can design, construct and analyze basic electronic and digital circuits.
- Students can understand the basics of programming language and apply it to various numerical problems.
- Students can develop effective communication skills.

Class/Paper/	Title	Course Outcome (CO)				
Semester		Director LIC (CDCC) Concertor L				
		Physics UG (CBCS) Semester-I				
РНҮ-Н-СС-	MATHEMAT	After completion of this course student should be able to learn:				
1-01	ICAL	• Second Order Differential equations: Homogeneous Equations with constant				
с <i>(</i> т	PHYSICS-I	coefficients. Wronskian and general solution. Statement of existence and				
Semester I		Uniqueness Theorem for Initial Value Problems. Particular Integral.				
		• Calculus of functions of more than one variable: Partial derivatives, exact and				
		inexact differentials. Integrating factor. Constrained Maximization using				
		Lagrange Multipliers.				
		• Scalar triple product and their interpretation in terms of area and volume				
		respectively. Scalar and Vector fields.				
		• Vector Differentiation: Vector identities. Gradient. divergence. curl and Laplacian				
		in spherical and cylindrical coordinates.				
						• Vector Integration: Ordinary Integrals of Vectors. Multiple integrals, Jacobian Line, surface and volume integrals of Vector fields.
		• Orthogonal Curvilinear Coordinates of Gradient, Divergence, Curl and Laplacian				
		in Cartesian, Spherical and Cylindrical Coordinate Systems.				
			• Matrices: Addition and Multiplication of Matrices. Null Matrices. Diagonal,			
		Scalar and Unit Matrices. Transpose of a Matrix. Symmetric and Skew-				
		Symmetric Matrices. Cayley-Hamiliton Theorem. Diagonalization of Matrices.				
		Solutions of Coupled Linear Ordinary homogeneous Differential Equations.				
		Functions of a Matrix.				
		• Introduction to probability: Independent random variables: Sample space and				
		Probability distribution functions. Binomial, Gaussian, and Poisson distribution.				
		Dirac Delta function and its properties				

PHY-H-CC-	MATHEMAT	After completion of this course student should be able to learn:
P-01	ICAL	• Computer architecture and organization, memory and Input/output devices
	PHYSICS-I	Basics of scientific computing
Semester I		• Binary and decimal arithmetic, Floating point numbers, algorithms, Sequence,
		Selection and Repetition, Iterative methods
		• Errors and error Analysis
		• Truncation and round off errors, Absolute and relative errors, Floating point
		computations.
		 Introduction to programming in Python/Fortran/Matlab/C/C++:
		• Introduction to programming, constants, variables and data types, dynamical
		typing, operators and expressions, modules, I/O statements, iterables, compound
		statements, indentation in python.
		 To plotting graphs with Matplotlib/Gnuplot/Origin/Excel
		• Basic 2D and 3D graph plotting - plotting functions and datafiles, fitting data
		using gnuplot's fit function, polar and parametric plots, modifying the appearance
		of graphs, Surface and contour plots, exporting plots
		• Find Solution of Algebraic and Transcendental equations by Bisection, Newton
		Raphson and Secant method
		• Interpolation by Newton Gregory Forward and Backward difference formula,
		Error estimation of linear interpolation
		• Numerical differentiation (Forward and Backward difference formula) and Integration (Transported and Simpson rules) Monte Carlo method
		Curve fitting Least square fit Coodness of fit standard deviation
	MECHANICS	Curve Inting, Least square III, Goodness of III, standard deviation
т_02	MECHANICS	After completion of this course student should be able to learn:
1-02		• Fundamentals of Dynamics: Reference frames. Inertial frames; Galilean transformations: Galilean invariance. Motion of rocket.
		• Work and Energy: Work and Kinetic Energy Theorem. Conservative and non-
Semester I		conservative forces. Potential Energy, Energy diagram. Stable and unstable
		equilibrium
		• Collisions: Elastic and inelastic collisions between particles. Centre of Mass and
		Laboratory frames.
		• Rotational Dynamics: Angular momentum of a particle and system of particles.
		Torque. Principle of conservation of angular momentum. Rotation about a fixed axis. Moment of Inertia
		• Elasticity: Relation between Elastic constants Twisting torque on a Cylinder or
		Wire
		• Fluid Motion: Kinematics of Moving Fluids: Poiseuille's Equation for Flow of a
		Liquid through a Capillary Tube. Euler's Equation. Bernoulli's Theorem.
		• Gravitation and Central Force Motion: Law of gravitation. Gravitational potential
		energy. Inertial and gravitational mass. Potential and field due to spherical shell and solid sphere
		• Motion of a particle under a central force field: Two-body problem and its
		reduction to reduction body problem and its solution. The energy equation and energy
		diagram. Kepler's Laws. Satellite in circular orbit and applications.
		Geosynchronous orbits.
		• Damped oscillation. Forced oscillations: Transient and steady states;
		Resonance, sharpness of resonance; power dissipation and Quality Factor.
		• Coriolisforce and its applications. Components of Velocity and Acceleration in
		Cylindrical and Spherical Coordinate Systems.

		• Special Theory of Relativity: Michelson-Morley Experiment and its outcome.Postulates of Special Theory of Relativity. Lorentz Transformations. Simultaneity and order of events. Lorentz contraction. Time dilation.
PHY-H-CC-	MECHANICS	After going through the course, the students should be able
P-02		• To Measure of length (or diameter) using vernier caliper, screw gauge and
		travelling microscope.
Semester I		• To study the random error in observations.
		• To determine the height of a building using a Sextant.
		• To determine the Moment of Inertia of a rigid body.
		• To determine Coefficient of Viscosity of water by Capillary Flow Method
		(Poiseuille's method).
		• To determine the Young's Modulus of the material of a bar by flexure method
		• To determine the value of g using Bar Pendulum.
		• To determine the value of g using Kater's Pendulum.
PHY-H-CC-	ELECTRICIT	After completion of this course student should be able to learn:
T-03	Y	• Electrostatic Potential. Laplace's and Poisson equations. The Uniqueness
	ANDMAGNE	Theorem. Potential and Electric Field of a dipole. Force and Torque on a dipole.
Semester II	TISM	• Electrostatic energy of a charged sphere. Conductors in an electrostatic Field.
		Parallel-plate capacitor. Capacitance of an isolated conductor. Method of Images
		and its application
		• Electric Field in matter. Polarization, Polarization Charges. Electrical
		Susceptibility and Dielectric Constant.
		• Magnetic force between current elements and definition of Magnetic FieldB.
		Biot-Savart's Law and its simple applications: straight wire and circular loop.
		Ampere's Circuital Law
		Magnetic Properties of Matter
		Electromagnetic Induction
PHY-H-CC-	ELECTRICIT	After going through the course, the students should be able
P-03		• To study the characteristics of a series(a) RC Circuit.
Somostor II	ANDMAGNE	• To determine an unknown Low Resistance using Potentiometer.
Semester II	115101	• To determine an unknown Low Resistance using Carey Foster's Bridge.
		• To compare capacitances using De' Sauty's bridge.
		• To verify the Thevenin and Norton theorems.
		• To verify the Superposition, and Maximum power transfer theorems.

PHY-H-CC-	WAVES AND	After completion of this course student should be able to learn:
T-04	OPTICS	• Plane and Spherical Waves. Longitudinal and Transverse Waves. Plane
		Progressive (Travelling) Waves. Wave Equation.
		• Velocity of Transverse Vibrations of Stretched Strings. Newton's Formula
Semester II		for Velocity of Sound. Laplace's Correction
		• Standing (Stationary) Waves in a String: Fixed and Free Ends. Analytical
		Treatment.Phase and Group Velocities. Changes with respect to Position and
		Time. Energy of Vibrating String. Transfer of Energy. Normal Modes of
		Stretched Strings. Plucked and Struck Strings
		• Electromagnetic nature of light. Definition and properties of wave front. Huygens
		Principle. Temporal and Spatial Coherence.
		Interference, Interferometer
		Diffraction
PHY-H-CC-	WAVES AND	After going through the course, the students should be able
P-04	OPTICS	• To determine wavelength of (1) Na source and (2) spectral lines of Hg source
Semester II		using plane diffraction grating.
		• To determine dispersive power and resolving power of a plane diffraction grating.
		• To draw the deviation - wavelength of the material of a prism and to find the
		wavelength of an unknown line from its deviation.
PHY-H-CC-	MATHEMAT	After completion of this course student should be able to learn:
T-05	ICAL	Fourier Series
~ ~~~	PHYSICS-II	 Frobenius Method and Special Functions
Semester III		Some Special Integrals
		• Theory of Errors
		Partial Differential Equations
PHY-H-CC-	MATHEMAT	After going through the course, the students should be able to
P-05	ICAL	Solve the following Ordinary Differential Equations (ODE) (1 st and 2 nd order Differential
	PHYSICS-II	equation) by Euler, modified Euler and Runge-Kutta (RK) 2 nd and 4 th order methods
Semester III		Radioactive decay
		 Current in LCR, RC, LC circuits with DC source and AC source.
		 Newton's law of cooling Classical equations of motion (1st and 2nd order Differential Equations)
		 Simple harmonic oscillator
		• Damped, overdamped, critically damped harmonic oscillator.
		Undamped and damped forced harmonic oscillator
		• I ransient and Steady state solution of a forced harmonic oscillator

PHY-H-CC-	THERMAL	After completion of this course student should be able to learn:
T-06	PHYSICS	• Zeroth and First Law of Thermodynamics
		Second Law of Thermodynamics
Semester III		• Entropy
		Thermodynamic Potentials
		Maxwell's Thermodynamic Relations
		Kinetic Theory of GasesDistribution of Velocities
		Molecular Collisions
		Real Gases
PHY-H-CC-	THERMAL	After going through the course, the students should be able
P-06	PHYSICS	• To determine the Coefficient of Thermal Conductivity of a bad conductor by Lee and Charlton's disc method.
Semester III		• To determine the Temperature Coefficient of Resistance by Platinum Resistance Thermometer
		 To study the variation of Thermo-Emf of a Thermocouple with Difference of
		Temperature of its Two Junctions
PHY-H-CC-	ANALOG	After completion of this course student should be able to learn:
T-07	SYSTEMS	• P and N type semiconductors. Energy Level Diagram.
Comostor III	AND	Conductivity and Mobility, Concept of Drift velocity. PN Junction Fabrication
Semester III	NS	• Rectifier Diode: Halfwave Rectifiers. Centre-tapped and Bridge Full-wave
		Rectifiers, Calculation of Ripple Factor
		 n-p-n and p-n-p Transistors. Characteristics of CB, CE and CC Configurations. Current gains α and β
		• Transistor Biasing and Stabilization Circuits. Fixed Bias and Voltage Divider
		Bias. Transistor as 2-port Network
		• Coupled Amplifier
		• Feedback in Amplifiers
		Sinusoidal Uscillators Operational Amplificare (Plack Day approach
		Operational Amplifiers (Black Box approach Applications of Op. Amps
		 Applications of Op-Allips Desistive network (Weighted and P. 2P. Ladder). Accuracy and Resolution. A/D.
		Conversion (successive approximation)
PHY-H-CC-	ANALOG	• After going through the course, the students should be able
P-07	SYSTEMS	• To study V-I characteristics of PN junction diode, and / Light emitting diode.
Samastar III	AND ADDI ICATIO	• To study the V-I characteristics of a Zener diode and its use as voltage regulator.
Semester III	NS	• Study of V-I & power curves of solar cells, and find maximum power point & efficiency.
		• To study the characteristics of a Bipolar Junction Transistor in CE configuration.
		• To study the various biasing configurations of BJT for normal class A operation.
		• To design a CE transistor amplifier of a given gain (mid-gain) using voltage
		divider bias.
		• To study the frequency response of voltage gain of a RC-coupled transistor amplifier.
PHY-H-CC-	MATHEMAT	After completion of this course student should be able to learn:
T-08	ICAL	• Brief Revision of Complex Numbers and their Graphical Representation. Euler's
	PHYSICS-III	formula, De Moivre's theorem, Roots of Complex Numbers. Functions of
Semester IV		Complex Variables. Analyticity and Cauchy-Riemann Conditions. Examples of
		analytic functions. Singular functions: poles and branch points, order of

	•	singularity Fourier Transforms: Fourier Integral theorem
	•	Scale Theorem, Shifting Theorem

PHY-H-CC- T-09 ELEMENTS OF MODERN PHYSICS After completion of this course student should be able to learn: Semester IV Planck's quantum hypothesis, Planck's constant and light as a collection of photons; Blackbody Radiation Semester IV Planck's quantum hypothesis, Planck's constant and light as a collection of photons; Blackbody Radiation Position measurement- gamma ray microscope thought experiment; Waveparticle duality, Heisenberg uncertainty principle Two slit interference experiment with photons, atoms and particles; linear superposition principle as a consequence One dimensional infinitely rigid box- energy eigen values and eigen functions, normalization; Quantum dot as example Size and structure of atomic nucleus and its relation with atomic weight; Impossibility of an electron being in the nucleus as a consequence of the uncertainty principle Stability of the nucleus; Law of radioactive decay; Mean life and half-life; Alpha decay; Beta decay- energy released, Fission and fusion- mass deficit, relativity and generation of energy; Fission - nature of fragments and emission of neutrons Lasers: Einstein's A and B coefficients. Metastable states. Spontaneous and Stimulated emissions. Optical Pumping and Population Inversion PHY-H-CC- P-09 ELEMENTS OF MODERN PHYSICS After going through the course, the students should be able Semester IV DIGITAL SYSTEMS ANDAPPLIC To determine the slit width (a) using diffraction of single slit. To determine the slit width (a,	PHY-H-CC- P-08 Semester IV	MATHEMAT ICAL PHYSICS-III	 After going through the course, the students should be able to find the Numerical computation using Python: Write a program to calculate the sum ∑_{n=1}[∞] 0.2ⁿ Evaluate the Fourier coefficients of a given periodic function (square wave). Frobenius method and special functions: Verify the relation ∫₋₁¹ P_n(µ)P_m(µ) = δ_{n,m}. Plot P_n(x), J_n(x). Calculation of error for each data point of observations recorded in experiments done in previous semesters (choose any two). Calculation of least square fitting manually without giving weightage to error. Confirmation of least square fitting of data through computer program.
Semester IV PHYSICS Semester IV PhySICS PhySICS Photons; Blackbody Radiation Position measurement- gamma ray microscope thought experiment; Waveparticle duality, Heisenberg uncertainty principle Two slit interference experiment with photons, atoms and particles; linear superposition principle as a consequence One dimensional infinitely rigid box- energy eigen values and eigen functions, normalization; Quantum dot as example Size and structure of atomic nucleus and its relation with atomic weight; Impossibility of an electron being in the nucleus as a consequence of the uncertainty principle Stability of the nucleus; Law of radioactive decay; Mean life and half-life; Alpha decay; Beta decay- energy released, Fission and fusion- mass deficit, relativity and generation of energy; Fission - nature of fragments and emission of neutrons Lasers: Einstein's A and B coefficients. Metastable states. Spontaneous and Stimulated emissions. Optical Pumping and Population Inversion PHY-H-CC-P-90 ELEMENTS PHYSICS After going through the course, the students should be able • To determine the Planck's constant using LEDs of at least 4 different colours. • To determine the slit width (a) using diffraction of single slit. • To determine the slit width (a) using diffraction of single slit. • To determine the slit width (a) using diffraction of single slit. • To determine (1) wavelength and of H	РНҮ-Н-СС- Т-09	ELEMENTS OF MODERN	 After completion of this course student should be able to learn: Planck's quantum hypothesis, Planck's constant and light as a collection of
PHY-H-CC- P-09 ELEMENTS OF MODERN PHYSICS After going through the course, the students should be able Semester IV PHYSICS Semester IV To determine the slit width (a) using diffraction of single slit. To determine the slit width (a,b) using diffraction of double slits. To determine the slit width (a,b) using diffraction of double slits. To determine the slit width (a,b) using diffraction of double slits. To determine the slit width (a,b) using diffraction of double slits. To determine the slit width (a,b) using diffraction of double slits. To determine the slit width (a,b) using diffraction of double slits. To determine the slit width (a,b) using diffraction of double slits. To determine the slit width (a,b) using diffraction of double slits. To determine the slit width (a,b) using diffraction of double slits. To determine the slit width (a,b) using diffraction of double slits. To determine (1) wavelength and of He-Ne light /laser using plane diffraction grating PHY-H-CC- DIGITAL T-10 SYSTEMS Anter completion of this course student should be able to learn: Introduction to CRO Integrated Circuits Boolean algebra Data processing circuits Band Full Adders. Half & Full Subtractors, 4-b	Semester IV	PHYSICS	 Printer of quantum hypothesis, rainer of constant and right as a consection of photons; Blackbody Radiation Position measurement- gamma ray microscope thought experiment; Waveparticle duality, Heisenberg uncertainty principle Two slit interference experiment with photons, atoms and particles; linear superposition principle as a consequence One dimensional infinitely rigid box- energy eigen values and eigen functions, normalization; Quantum dot as example Size and structure of atomic nucleus and its relation with atomic weight; Impossibility of an electron being in the nucleus as a consequence of the uncertainty principle Stability of the nucleus; Law of radioactive decay; Mean life and half-life; Alpha decay; Beta decay- energy released, Fission and fusion- mass deficit, relativity and generation of energy; Fission - nature of fragments and emission of neutrons Lasers: Einstein's A and B coefficients. Metastable states. Spontaneous and Stimulated emissions. Optical Pumping and Population Inversion
Semester IV PHYSICS • To determine the slit width (a) using diffraction of single slit. • To determine the slit width (a) using diffraction of double slits. • To determine the slit width (a,b) using diffraction of double slits. • To determine the slit width (a,b) using diffraction of double slits. • To determine the slit width (a,b) using diffraction of double slits. • To determine the slit width (a,b) using diffraction of double slits. • To determine the slit width (a,b) using diffraction of double slits. • To determine the slit width (a,b) using diffraction of double slits. • To determine the slit width (a,b) using diffraction of double slits. • To determine the slit width (a,b) using diffraction of double slits. • To determine the slit width (a,b) using diffraction of double slits. • To determine the slit width (a,b) using diffraction of double slits. • To determine the slit width (a,b) using diffraction of double slits. • To determine the slit width (a,b) using diffraction of double slits. • To determine the slit width (a,b) using diffraction of double slits. • To determine the slit width (a,b) using diffraction of this course student should be able to learn: • Introduction to CRO • Integrated Circuits • Introduction to CRO • Integrated Circuits • Digital Circuits • Digital Circuits • Digital Circuits • Data processing circuits • Data processing circuits • Arithmetic Circuit	PHY-H-CC- P-09	ELEMENTS OF MODERN	After going through the course, the students should be able • To determine the Planck's constant using LEDs of at least 4 different colours
Semester IV • To determine the slit width (a,b) using diffraction of double slits. • To determine the slit width (a,b) using diffraction of double slits. • To determine (1) wavelength and of He-Ne light /laser using plane diffractio grating PHY-H-CC- T-10 DIGITAL SYSTEMS ANDAPPLIC Semester IV After completion of this course student should be able to learn: • Integrated Circuits • Integrated Circuits • Digital Circuits • Digital Circuits • Boolean algebra • Data processing circuits • Arithmetic Circuits: Binary Addition. Binary Subtraction using 2's Complement. Half and Full Adders. Half & Full Subtractors, 4-bit binary Adder/Subtractor • Sequential Circuits: SR, D, and JK Flip-Flops. Clocked (Level and Edge Triggered) Flip-Flops. Preset and Clear operations. Bace-around conditions in IK		PHYSICS	 To determine the slit width (a) using diffraction of single slit.
 To determine (1) wavelength and of He-Ne light /laser using plane diffractio grating PHY-H-CC- T-10 PHY-H-CC- T-10 SYSTEMS ANDAPPLIC Semester IV ATIONS ATIONS ATIONS Atter completion of this course student should be able to learn: Introduction to CRO Integrated Circuits Digital Circuits Boolean algebra Data processing circuits Arithmetic Circuits: Binary Addition. Binary Subtraction using 2's Complement. Half and Full Adders. Half & Full Subtractors, 4-bit binary Adder/Subtractor Sequential Circuits: SR, D, and JK Flip-Flops. Clocked (Level and Edge Triggered) Flip-Flops. Preset and Clear operations. Bace-around conditions in IK 	Semester IV		• To determine the slit width (a,b) using diffraction of double slits.
PHY-H-CC- T-10DIGITAL SYSTEMS ANDAPPLICAfter completion of this course student should be able to learn:Semester IVATIONSIntroduction to CROSemester IVATIONSDigital CircuitsBoolean algebraBoolean algebraData processing circuits:Data processing circuits:Arithmetic Circuits: Binary Addition. Binary Subtraction using 2's Complement. Half and Full Adders. Half & Full Subtractors, 4-bit binary Adder/SubtractorSequential Circuits: SR, D, and JK Flip-Flops. Clocked (Level and Edge Triggered) Flip-Flops. Preset and Clear operations. Bace-around conditions in IK			• To determine (1) wavelength and of He-Ne light /laser using plane diffraction grating
ANDAPPLIC Integrated Circuits Semester IV ATIONS • Integrated Circuits • Digital Circuits • Boolean algebra • Data processing circuits • Arithmetic Circuits: Binary Addition. Binary Subtraction using 2's Complement. Half and Full Adders. Half & Full Subtractors, 4-bit binary Adder/Subtractor • Sequential Circuits: SR, D, and JK Flip-Flops. Clocked (Level and Edge Triggered) Flip-Flops. Preset and Clear operations. Bace-around conditions in IK	РНҮ-Н-СС- Т-10	DIGITAL SYSTEMS	After completion of this course student should be able to learn:Introduction to CRO
 Boolean algebra Data processing circuits Arithmetic Circuits: Binary Addition. Binary Subtraction using 2's Complement. Half and Full Adders. Half & Full Subtractors, 4-bit binary Adder/Subtractor Sequential Circuits: SR, D, and JK Flip-Flops. Clocked (Level and Edge Triggered) Flip-Flops. Preset and Clear operations. Bace-around conditions in IK 	Semester IV	ANDAPPLIC ATIONS	 Integrated Circuits Digital Circuits
 Data processing circuits Arithmetic Circuits: Binary Addition. Binary Subtraction using 2's Complement. Half and Full Adders. Half & Full Subtractors, 4-bit binary Adder/Subtractor Sequential Circuits: SR, D, and JK Flip-Flops. Clocked (Level and Edge Triggered) Flip-Flops. Preset and Clear operations. Bace-around conditions in IK 			Boolean algebra
 Arithmetic Circuits: Binary Addition. Binary Subtraction using 2's Complement. Half and Full Adders. Half & Full Subtractors, 4-bit binary Adder/Subtractor Sequential Circuits: SR, D, and JK Flip-Flops. Clocked (Level and Edge Triggered) Flip-Flops. Preset and Clear operations. Race-around conditions in IK 			Data processing circuits Arithmetic Circuits
The second of the trease and clear operations. Nace a solid conditions in the			 Arithmetic Circuits: Binary Addition. Binary Subtraction using 2's Complement. Half and Full Adders. Half & Full Subtractors, 4-bit binary Adder/Subtractor Sequential Circuits: SR, D, and JK Flip-Flops. Clocked (Level and Edge Triggered) Flip-Flops. Preset and Clear operations. Race-around conditions in JK

	•	Timers: IC 555: block diagram and applications
	•	Shift registers: Serial-in-Serial-out, Serial-in-Parallel-out, Parallel-in-Serial-out
		and Parallel-in-Parallel-out Shift Registers
	•	Ring Counter. Asynchronous counters, Decade Counter
	•	Intel 8085 Microprocessor Architecture: Main features of 8085. Block diagram.
		Components. Pin-out diagram, Buses

PHY-H-CC-	DIGITAL	After going through the course, the students should be able
P-10	SYSTEMS	• To measure (a) Voltage, and (b) Time period of a periodic waveform using CRO.
	ANDAPPLIC	• To test a Diode and Transistor using a Multimeter.
Semester IV	ATIONS	• To design a switch (NOT gate) using a transistor.
		• To verify and design AND OR NOT XOR and using NAND gates
		To design a combinational logic system for a specified Truth Table
		• To design a combinational logic system for a specified fruth fable.
		• To convert a Boolean expression into logic circuit and design it using logic gate ICs.
		To minimize a given logic circuit
		• To minimize a given logic circuit.
		• Half Adder, Full Adder and 4-bit binary Adder.
PHY-H-CC-	QUANTUM	After completion of this course student should be able to learn:
T-11	MECHANICS	Time dependent Schrodinger equation
	ANDAPPLIC	• Time independent Schrodinger equation-Hamiltonian
	ATIONS	• General discussion of bound states in an arbitrary potential
Semester V		• Quantum theory of hydrogen-like atoms
		Atoms in Electric & Magnetic Fields
		Atoms in External Magnetic Fields
		 Many electron atoms: Pauli's Exclusion Principle Symmetric & Anti-symmetric
		Wave Functions Periodic table Fine structure Spin orbit coupling
		wave i dictions, i criodie dable, i me su detare, spin orbit coupring
PHY-H-CC-	OUANTUM	After going through the course, the students should be able to use Python Programming
P-11	MECHANICS	and to
	ANDAPPLIC	1. Solve the s-wave Schrodinger equation for the ground state and the first excited state
	ATIONS	$d^2y = 2m (F - H(x))$
Semester V		of the hydrogen atom: $\frac{dr^2}{dr^2} = \frac{1}{\hbar^2} (E - V(r))y$
Semester V		where $V(r) = -\frac{e^2}{r}$
		2. Solve the s-wave radial Schrödinger equation for an atom $\frac{d^2y}{dt^2} = \frac{2m}{dt^2}(E - V(r))y$,
		dr^2 h^2
		where $V(r) = -\frac{1}{r}e^{-r/a}$
		3. Solve the s-wave radial Schrodinger equation for an atom
		$d^2y 2m_{(T)}$
		$\frac{1}{dr^2} = \frac{1}{\hbar^2} (E - V(r)) y$
		where $V(r) = -\frac{e^2}{r}$
		where $V(r) = -\frac{1}{r}$
PHY-H-CC-	STATISTICA	After completion of this course student should be able to learn:
T-12	L	Classical Statistics: Macro state & Microstate, Elementary Concept of Ensemble.
	MECHANICS	Phase Space, Entropy and Thermodynamic Probability
Semester V		Classical Theory of Radiation: Properties of Thermal Radiation
		Ouantum Theory of Radiation: Spectral Distribution of Black Body Radiation
		Bose-Einstein Statistics: B-E distribution law Thermodynamic functions of a
		strongly Degenerate Bose Gas
		Fermi-Dirac Statistics: Fermi-Dirac Distribution Law
PHY-H-CC-	STATISTICA	After going through the course, the students should be able to
P-12	L	• Plot Planck's law for Black Body radiation and compare it with Wein's Law and
	MECHANICS	Raleigh-Jeans Law at high temperature (room temperature) and low temperature.

Semester V		• Plot Specific Heat of Solids by comparing (a) Dulong-Petit law, (b) Einstein distribution function (c) Debye distribution function for high temperature (room
		temperature) and low temperature and compare them for these two cases
		 Plot Maxwell-Boltzmann distribution function versus temperature
		 Plot Fermi-Dirac distribution function versus temperature
		 Plot Pose-Finstein distribution function versus temperature.
PHY-H-CC-	FLECTROM	After completion of this course student should be able to learn:
T-13	AGNETIC	 Maxwell Equations: Displacement Current, Vactor and Scalar Potentials, Gauge
1 15	THEORY	Transformations: Lorentz and Coulomb Gauge
Semester VI		 Plane FM waves through vacuum and isotropic dielectric medium transverse
		• I falle Elvi waves unough vacuum and isotropic dielectric incurum, transverse nature of plane EM waves, refractive index and dielectric constant, wave
		impedance
		 Boundary conditions at a plane interface between two media. Reflection &
		• Boundary conditions at a plane interface between two incuta. Reflection &
		of Reflection & Refraction
		 Description of Linear Circular and Elliptical Polarization Propagation of E M
		Wayes in Anisotropic Media Symmetric Nature of Dielectric Tensor Fresnel's
		Formula Uniaxial and Biaxial Crystals
		Ontical Rotation Biot's Laws for Rotatory Polarization Fresnel's Theory of
		ontical rotation. Calculation of angle of rotation
		 Planar optical wave guides Planar dielectric wave guide Condition of continuity
		at interface. Phase shift on total reflection
		• Numerical Aperture. Step and Graded Indices (Definitions Only) Single and
		Multiple Mode Fibres
PHY-H-CC-	ELECTROM	After going through the course, the students should be able
P-13	AGNETIC	• To determine the specific rotation of sugar solution using Polarimeter.
	THEORY	• To determine the Boltzmann constant using V-I characteristics of PN junction
Semester VI		diode
		• To determine the wavelength and velocity of ultrasonic waves in a liquid
		(Kerosene Oil, Xylene, etc.) by studying the diffraction through ultrasonic
		grating.
		• To study the reflection, refraction of microwaves
		• To study Polarization and double slit interference in microwaves.
PHY-H-CC-	SOLID	After completion of this course student should be able to learn:
T-14	STATE	Crystal Structure: Solids: Amorphous and Crystalline Materials. Lattice
~ ~ ~ ~	PHYSICS	Translation Vectors
Semester VI		 Elementary Lattice Dynamics: Lattice Vibrations and Phonons: Linear
		Monoatomic and Diatomic Chains. Acoustical and Optical Phonons. Qualitative
		Description of the Phonon Spectrum in Solids.
		• Magnetic Properties of Matter: Dia-, Para-, Ferri- and Ferromagnetic Materials.
		Classical Langevin Theory of dia- and Paramagnetic Domains
		• Dielectric Properties of Materials: Polarization. Local Electric Field at an Atom.
		Depolarization Field. Electric Susceptibility. Polarizability. Clausius Mosotti
		Equation
		• Ferroelectric Properties of Materials: Structural phase transition
		• Elementary band theory: Kronig-Penny model. Band Gap
		Superconductivity: Experimental Results. Critical Temperature
РНҮ-Н-СС-	SOLID	After going through the course, the students should be able

P-14	STATE	• To determine the Coupling Coefficient of a Piezoelectric crystal.
	PHYSICS	• To measure the Dielectric Constant of a dielectric Materials with frequency
Semester VI		• To determine the complex dielectric constant and plasma frequency of metal
		using Surface Plasmon resonance (SPR)
		• To determine the refractive index of a dielectric layer using SPR
		• To study the PE Hysteresis loop of a Ferroelectric Crystal.
		• To draw the BH curve of Fe using Solenoid & determine energy loss from
		Hysteresis.
		• To measure the resistivity of a semiconductor (Ge) with temperature by four- probemethod (room temperature to 150 °C) and to determine its band gap.
PHY-H-	CLASSICAL	After completion of this course student should be able to learn:
DSE-T-01	DYNAMICS	Generalized coordinates and velocities.
Compostor V		• Hamilton's Principle, Lagrangian and Euler-Lagrange equations.
Semester v		Geometrical interpretation of Space-time:Minkowski space. The invariant
		interval, light cone and world lines.
		• Space-time diagrams. Intervals: space-like, time-like & light-like. Four-velocity
		and acceleration.
		Potentials due to a moving charge: Lienard Wiechert potentials.
PHY-H-	NUCLEAR	After completion of this course student should be able to learn:
DSE-1-02	ANDPARTIC	• General Properties of Nuclei: Constituents of nucleus and their Intrinsic
Somester V	LEPHISICS	properties, binding energy
Semester v		• Liquid drop model approach, semi empirical mass formula and significance of its
		various terms, condition of nuclear stability
		• Radioactivity decay
		 Nuclear Reactions: Types of Reactions, Conservation Laws, kinematics of reactions, Q-value
		Nuclear Astrophysics: Early universe, primordial nucleo-synthesis
		• Interaction of Nuclear Radiation with matter: Energy loss due to ionization
		(Bethe-Block formula), energy loss of electrons, Cerenkov radiation
		 Detector for Nuclear Radiations: Gas detectors: estimation of electric field, mobility of particle, for ionization chamber and GM Counter. Basic principle of Scintillation Detectors
		 Particle Accelerators: Accelerator facility available in India: Van-de Graaff
		generator (Tandem accelerator). Linear accelerator, Cyclotron, Synchrotrons.
		 Particle physics: Particle interactions: basic features, types of particles and its
		families. Symmetries and Conservation Laws
PHY-H-	NANO	After completion of this course student should be able to learn:
DSE-T-03	MATERIALS	• Length scales in physics, Nanostructures: 1D, 2D and 3D nanostructures
	AND	(nanodots, thin films, nanowires, nanorods), Band structure and density of states
Semester VI	APPLICATIO	of materials at nanoscale, Size Effects in nano systems
	NS	• Top down and Bottom up approach, Photolithography. Ball milling. Gas phase
		condensation
		• X-Ray Diffraction. Optical Microscopy. Scanning Electron Microscopy.
		• Coulomb interaction in nanostructures. Concept of dielectric constant for
		nanostructures and charging of nanostructure. Quasi-particles and excitons.
		Excitons in direct and indirect band gap semiconductor nanocrystals.
		• Carrier transport in nanostructures. Couloind diockade effect, thermionic emission tunneling and hoping conductivity
PHY-H- DSE-T-01 Semester V Semester V Semester V PHY-H- DSE-T-03 Semester VI	CLASSICAL DYNAMICS	 To study the PE Hysteresis loop of a Ferroelectric Crystal. To draw the BH curve of Fe using Solenoid & determine energy loss fror Hysteresis. To measure the resistivity of a semiconductor (Ge) with temperature by four probemethod (room temperature to 150 °C) and to determine its band gap. After completion of this course student should be able to learn: Generalized coordinates and velocities. Hamilton's Principle, Lagrangian and Euler-Lagrange equations. Geometrical interpretation of Space-time:Minkowski space. The invariant interval, light cone and world lines. Space-time diagrams. Intervals: space-like, time-like & light-like. Four-velocity and acceleration. Potentials due to a moving charge: Lienard Wiechert potentials. After completion of this course student should be able to learn: General Properties of Nuclei: Constituents of nucleus and their Intrinsic properties, binding energy Liquid drop model approach, semi empirical mass formula and significance of its various terms, condition of nuclear stability Radioactivity decay Nuclear Reactions: Types of Reactions, Conservation Laws, kinematics of reactions, Q-value Nuclear Astrophysics: Early universe, primordial nucleo-synthesis Interaction of Nuclear Radiation with matter: Energy loss due to ionization (Bethe-Block formula), energy loss of electrons, Cerenkov radiation Detector for Nuclear Radiations: Gas detectors: estimation of electric field, mobility of particle, for ionization chamber and GM Counter. Basic principle of Scintillation Detectors Particle Accelerators: Accelerator, Linear accelerator, Cyclotron, Synchrotrons. Particle physics: Particle interactions; basic features, types of particles and its families. Symmetries and Conservation Laws After completion of this course student should be able to learn

		• Applications of nanoparticles, quantum dots, nano wires and thin films for photonic devices (LED, solar cells). Single electron devices (no derivation). CNT based transistors.
B.Sc. Program	nme (General) Co	urse, Physics
Program Spec	ific Outcomes (P	SO):
• The st	udents would gai	n substantial knowledge in various branches of physics: Electronics, Quantum, classical,
statist	ical mechanics, co	ondensed matter physics, astrophysics, particle, nuclear and high energy Physics.
Also s	students learn abo	ut various application based topic such as workshop skill, weather forecasting, Radiation
Hazai	us etc.	
Class/Paper/ Semester	Title	Course Outcome (CO)
PHY-G-CC-	MECHANICS	After completion of this course student should be able to learn:
T-01		• Fundamentals of Dynamics: Reference frames. Inertial frames; Galilean
1 01		transformations; Galilean invariance. Motion of rocket.
		• Work and Energy: Work and Kinetic Energy Theorem. Conservative and non-
Sem I		conservative forces. Potential Energy. Energy diagram. Stable and unstable
		equilibrium
		• Collisions: Elastic and inelastic collisions between particles. Centre of Mass and Laboratory frames.
		• Rotational Dynamics: Angular momentum of a particle and system of particles.
		Torque. Principle of conservation of angular momentum. Rotation about a fixed axis. Moment of Inertia.
		 Elasticity: Relation between Elastic constants. Twisting torque on a Cylinder or Wire
		• Damped oscillation. Forced oscillations: Transient and steady states; Resonance,
		sharpness of resonance; power dissipation and Quality Factor.
		 Coriolisforce and its applications. Components of Velocity and Acceleration in Cylindrical and Spherical Coordinate Systems.
		• Special Theory of Relativity: Michelson-Morley Experiment and its outcome.
		Postulates of Special Theory of Relativity. Lorentz Transformations.
PHY-G-CC-	MECHANICS	After going through the course, the students should be able
P-01		• To Measure of length (or diameter) using vernier caliper, screw gauge and
		travelling microscope.
		• To study the random error in observations.
Sem I		• To determine the height of a building using a Sextant.
		 To determine the Moment of Inertia of a rigid body. Modulus of the meterial of a her by flavure method
		 To determine the value of a using Bar Pendulum
		 To determine the value of g using Kater's Pendulum
DHY C CC	ELECTRICIT	After completion of this course student should be able to learn:
гпт-0-СС- Т_02	Y AND	• Electrostatic Potential. Laplace's and Poisson equations. The Uniqueness
1-02	MAGNETISM	Theorem. Potential and Electric Field of a dipole. Force and Torque on a dipole.
	AND EM	• Electrostatic energy of a charged sphere. Conductors in an electrostatic Field.
	THEORY	Parallel-plate capacitor.
Sem II		 Electric Field in matter. Polarization, Polarization Charges. Electrical Susceptibility and Dielectric Constant.

		• Magnetic force between current elements and definition of Magnetic Field B.
		• Biot-Savart's Law
		• Magnetic Properties of Matter
		• Electromagnetic Induction
PHV C CC	ELECTRICIT	After going through the course, the students should be able
P 02	Y AND	• To study the characteristics of a series RC Circuit.
1-02	MAGNETISM	• To determine an unknown Low Resistance using Potentiometer.
	AND EM	• To determine an unknown Low Resistance using Carey Foster's Bridge.
Sem II	THEORY	 To verify the Theyenin and Norton theorems
		• To verify the Superposition and Maximum power transfer theorems
	THERMAL	After completion of this course student should be able to learn:
PHY-G-CC-	PHYSICS	Thermodynamic Description of system: Zeroth Law of thermodynamics and
T-03	AND	temperature First law and internal energy conversion of heat into work
	STATISTICA	• Enthalpy Gibbs Helmholtz and Internal Energy functions Maxwell's relations
	L	and applications - Joule-Thompson Effect
Com III	MECHANICS	 Derivation of Maxwell's law of distribution of velocities and its experimental
Sem III		verification. Mean free path (Zeroth Order). Transport Phenomena:
		Viscosity. Conduction and Diffusion
		• Blackbody radiation, Spectral distribution, Concept of Energy density, Derivation
		of Planck's law
		• Maxwell-Boltzmann law - distribution of velocity – Quantum statistics - Phase
		space - Fermi-Dirac distribution law
		1.
PHY-G-CC-	THERMAL	After going through the course, the students should be able
	PHYSICS	• To determine Mechanical Equivalent of Heat, J, by Callender and Barne's
r-03	AND	constant flow method.
	STATISTICA	• Measurement of Planck's constant using black body radiation.
Sem III	L	• To determine Stefan's Constant.
	MECHANICS	• To determine the coefficient of thermal conductivity of Cu by Searle's Apparatus.
		• To determine the Coefficient of Thermal Conductivity of Cu by Angstrom's
		Method.
		• To determine the coefficient of thermal conductivity of a bad conductor by Lee
		and Charlton's disc method.
		• To determine the temperature co-efficient of resistance by Platinum resistance
		thermometer.
		• To study the variation of thermo e.m.f across two junctions of a thermocouple with
		temperature.
PHY-G-CC-	WAVES AND	After completion of this course student should be able to learn:
T-04	OPTICS	• Plane and Spherical Waves. Longitudinal and Transverse Waves. Plane
101		Progressive (Travelling) Waves. Wave Equation.
		• Velocity of Transverse Vibrations of Stretched Strings. Newton's Formula
Sem IV		forVelocity of Sound. Laplace's Correction
		• Standing (Stationary) Waves in a String: Fixed and Free Ends. Analytical
		Treatment. Phase and Group Velocities. Changes with respect to Position and
		Time. Energy of Vibrating String. Transfer of Energy. Normal Modes of
		Stretched Strings. Plucked and Struck Strings
		• Electromagnetic nature of light. Definition and properties of wave front. Huygens
		Principle. Temporal and Spatial Coherence.
		Interference, Interferometer

		Diffraction
PHY-G-CC- P-04 Sem IV	WAVES AND OPTICS	 After going through the course, the students should be able To determine wavelength of (1) Na source and (2) spectral lines ofHg source using plane diffraction grating. To determine dispersive power and resolving power of a plane diffraction grating. To draw the deviation - wavelength of the material of a prism and to find the wavelength of an unknown line from its deviation.
PHY-G- DSE-T-01 Sem V	DIGITAL, ANALOG CIRCUITS AND INSTRUMEN TATION	 After completion of this course student should be able to learn: Difference between Analog and Digital Circuits. Binary Numbers. Decimal to Binary and Binary to Decimal Conversion, AND, OR and NOT Gates Semiconductor Diodes: P and N type semiconductors. Barrier Formation in PN Junction Diode. Qualitative Idea of Current Flow Mechanism in Forward and Reverse Biased Diode. Bipolar Junction transistors: n-p-n and p-n-p Transistors. Characteristics of CB, CE and CC Configurations. Current gains α and β. Characteristics of an Ideal and Practical Op-Amp (IC 741), Open-loop and closed- loop Gain Barkhausen's Criterion for Self-sustained Oscillations. Determination of Frequency of RC Oscillator Introduction to CRO: Block Diagram of CRO Power Supply: Half-wave Rectifiers. Centre-tapped and Bridge Full-wave Rectifiers Calculation of Ripple Factor and Rectification Efficiency, Basic idea about capacitor filter, Timer IC: IC 555 Pin diagram and its application as Astable and Monostable Multivibrator
PHY-G- DSE-P-01	DIGITAL, ANALOG CIRCUITS AND INSTRUMEN TATION	 After going through the course, the students should be able To measure (a) Voltage, and (b) Frequency of a periodic waveform using CRO To verify and design AND, OR, NOT and XOR gates using NAND gates. To minimize a given logic circuit
Sem V		 Forminize a given logic circuit. Half adder, Full adder and 4-bit Binary Adder. Adder-Sub tractor using Full Adder I.C. To design an astable multivibrator of given specifications using 555 Timer. To design a monostable multivibrator of given specifications using 555 Timer. To study IV characteristics of PN diode, Zener and Light emitting diode To study the characteristics of a Transistor in CE configuration. To design a CE amplifier of given gain (mid-gain) using voltage divider bias. To design an inverting amplifier of given gain using Op-amp 741 and study its frequency response.
PHY-G- DSE-T-02 Sem VI	SOLID STATE PHYSICS	 After completion of this course student should be able to learn: Crystal Structure: Solids: Amorphous and Crystalline Materials. Lattice Translation Vectors Elementary Lattice Dynamics: Lattice Vibrations and Phonons. Qualitative

		Description of the Phonon Spectrum in Solids.
		• Magnetic Properties of Matter: Dia-, Para-, Ferri- and Ferromagnetic Materials.
		• Dielectric Properties of Materials: Polarization. Local Electric Field at an Atom.
		• Ferroelectric Properties of Materials: Structural phase transition
		• Elementary band theory: Kronig Penny model. Band Gap
		Superconductivity: Experimental Results. Critical Temperature
PHY-G- DSE-T-02	SOLID STATE PHYSICS	After going through the course, the students should be able
		 To determine the Coupling Coefficient of a Piezoelectric crystal.
		• To measure the Dielectric Constant of a dielectric Materials with frequency
Semester VI		• To determine the refractive index of a dielectric layer using SPR
		• To draw the BH curve of Fe using Solenoid & determine energy loss from
		Hysteresis.
		• To measure the resistivity of a semiconductor (Ge) with temperature by four- probe method (room temperature to 150 °C) and to determine its band gap.